LANs, VLANs, Wireless and Optical Ethernet
Lesson 5: Twisted-Pair LAN Cables, Categories, Wiring Plan and Switch Hierarchy

Benefit from decades of knowledge, insight and experience distilled into clear lessons designed for non‑engineers, logically organized to build one concept on another… in plain English. Join our thousands of satisfied customers including the FBI Training Academy, US Marine Corps Communications School, US Army, Navy, Air Force and Coast Guard, the NSA and CIA, IRS, FAA, DND, CRA, CRTC, RCMP, banks, power companies, police forces, manufacturers, government, local and regional telcos, broadband carriers, individuals, telecom planners and administrators, finance, tax and accounting personnel and many more from hundreds of companies. Teracom's GSA Contract GS-02F-0053X for supplying this training to the United States Government is your assurance of approved quality and value.

we provide training to at&t             we provide training to verizon             we provide training to Bell Canada             microsoft             we provide training to intel             we provide training to cisco             GSA contract holder - pre-approved pricing and quality - supplier to the US Government             cox cable            

Certification Packages That Include This Course

CTNS Certification Package

Eight online courses plus TCO Certification covering the core knowledge needed for telecommunications today:
  • Introduction to Broadband Converged IP Telecom
  • Wireless Telecommunications
  • Fundamentals of Voice over IP
  • The PSTN
  • The OSI Layers and Protocol Stacks
  • LANs, VLANs, Wireless and Optical Ethernet
  • IP Networks, Routers and Addresses
  • MPLS and Carrier Networks

TCO Certification, Certificate and Letter of Reference.

Based on Teracom's famous training

30-day, 100% money-back guarantee

Invest in yourself!

register now
ctns certificate

CTA Certification Package

Sixteen online courses covering telecom, datacom and networking for non‑engineers from A‑Z, plus the prestigious TCO Certified Telecommunications Analyst certification.

Includes the six CTNS courses plus

  • The Telecommunications Industry
  • Digital
  • Transmission Systems and Fiber Optics
  • IP Security
  • The Internet, and many more

TCO Certification, Certificate and Letter of Reference.

Based on Teracom's famous training

30-day, 100% money-back guarantee

Invest in yourself!

register now for CTA
cta certificate

CIPTS Certification Package

Four online courses covering the IP telecom network, plus the TCO Certified IP Telecom Specialist certification.

  • The OSI Layers and Protocol Stacks
  • LANs, VLANs, Wireless and Optical Ethernet
  • IP Networks, Routers and Addresses
  • MPLS and Carrier Networks

TCO Certification, Certificate and Letter of Reference.

Based on Teracom's famous training

30-day, 100% money-back guarantee

Invest in yourself!

register now
cipts certificate

CTSME Certification Package

The TCO Certified Telecommunications Subject Matter Expert (CTSME) is the most comprehensive telecom, datacom,  networking, wireless, VoIP and SIP training and certification available anywhere.

CTSME encompasses four TCO Certifications: CTA, CVA, CWA and CTNS. You get all four certifications, with their courses, bundled with a discount in the CTSME Certification Package.

Complete all four to get your Certified Telecommunications Subject Matter Expert credential, including a framed TCO CTMSE Certificate and personal Letter of Introduction for your résumé.

Five TCO Certifications, Five Certificates and Letter of Reference. 30-day, 100% money-back guarantee

Invest in yourself!

register now for CTA
ctsme certificate

Study Guide Notes For This Lesson

These are the words that are displayed and spoken during the lesson. Get these notes for the whole course in the Certification Study Guide, available in print or eBook. Many people tell us a printed companion book enhances their learning!

LANs for the most part run over cables inside buildings.

The term “cable” is often used to mean “bundles of wires”. Connectors or terminations may also be included in the package.

Copper wires are typically used for LAN cables. Copper is used because it is inexpensive, pliable, corrosion-resistant, and easy to extrude into long, thin wires.

Historically, copper wires have been used for two-wire telephone circuits (“loops”). The two wires are twisted together to reduce pickup of noise, and so are often referred to as twisted pair.

The wire may be solid or braided, the latter being more expensive to manufacture but better resistant to breakage.

A shield may be placed around individual pairs, and/or around the entire bundle of wires in a cable. The shield is a metal foil or mesh that prevents noise from reaching the wires inside it.

Category 5 and 5e cables, for up to 1 Gb/s are unshielded twisted pair (UTP). Category 6 cables have shielding as illustrated.

TIA-568 LAN Cable Categories

The most widely-followed standard for LAN cables is TIA-568, published by the Electronic Industries Association and its Telecommunications Industry Association sub-group.

This standard defines categories of twisted-pair cabling that support different line speeds.

Telecommunications Systems Bulletin TSB-67 adds the requirements and methods for field testing installed cable systems.

Taken together, these are the authority how to design and install a structured cabling system.

TIA-568 Category 1 cable is existing telephone cabling, also called Rusty Twisted Pair (RTP).

Category 2 cable was 25-pair multiconductor cables for old key telephone systems that had buttons to press to access different lines.

Category 3 cable was specified for 10 Mb/s Ethernet on twisted pair, 10BASE-T.

Category 4 cable was specified for the 16 Mb/s token ring.

Category 5 cabling was for the future at up to 1000 Mb/s.

All of these categories are now obsolete.

Cat 5 cable was supposed to handle Gigabit Ethernet, but in practice turned out to be missing the specification of required transmission characteristics.

Enhanced Category 5 (Cat 5e) was specified to guarantee the operation of 1000BASE-T.

Category 6 cable is specified to support 10 Gb/s on twisted pair. It starts being necessary to specify the frequency bandwidth supported on the twisted pair along with all of the other transmission characteristics to enable communication at these line speeds.

In theory, Category 7 supports 100 Gb/s on twisted pair.

This is the same bit rate as top-end fiber core network circuits, so one could probably expect it will be a while before we see any significant deployment of Cat 7.

Cable Construction

All of these categories specify cables with four pairs (eight wires) and a maximum length of 100 meters. 

The difference between the categories rests in guaranteed transmission characteristics of the cable, including specifications for Near-End Crosstalk (NEXT), Attenuation to Crosstalk Ratio (ACR), supported frequency bandwidth, all of which affect the maximum possible information transfer rate, and hence what kind of devices can be successfully attached to each end of the cable.

One of the main factors in getting a cable certified to meet the TIA-568 category is quality control, particularly in the consistency of the twisting and placement of the pairs.

Two pairs will be twisted at a particular number of twists per inch, but offset by half a period to minimize crosstalk between the pairs.

The other two pairs will be twisted at a different rate that is not a multiple of the other, and similarly with the twists exactly not lined up. 

How well and how consistently this is accomplished during the manufacturing process determines how successful the manufacturer will be in having the cable certified as meeting the standard.

Which to Use

When determining which category of cable to use, life cycle and cost are determining factors.

For a patch cable connecting a DSL or Cable Modem to a device inside a residence, where we have an expectation that the line speed will not exceed 100 Mb/s in the foreseeable future, then Cat 5 patch cables may be used.

For an extra ten cents, a Cat 5e patch cable would allow the continued use of the cable were the line speed to increase above 100 Mb/s, as it inevitably will at some time in the future.

When wiring a building, the cost of the labor to pull the cables is far more than the cost of the cable.

Conventional wisdom is to install the highest capacity available cable at the time the building is wired to avoid having to ever rewire the building. 

The person who worked for a school board who got upset at me in a class for telling them they had made a mistake wiring their schools with Cat 3 to save a bit of money is to this day stuck at a maximum of 10 Mb/s, when the rest of the world is at 100 Mb/s and 1000 Mb/s. 

At a minimum, Category 5e cable would be pulled in a building.

The smart money would install Category 6 certified cable terminated at one end on a Category 6 certified wall jack and at the other end on Category 6 certified patch panels. 

Patch cords would then used to connect a computer’s LAN jack to the wall jack at one end, and from the patch panel to an Ethernet switch at the other end.

Ethernet switches are covered in an upcoming lesson.

Wiring Designs

The maximum run length of the cables – including runs through risers, poles, conduits – is 100 m (330 feet).

To be conservative, the patch panel and switch would be located in a wiring closet serving a radius of perhaps 100 feet.

These wiring closet switches could be connected to centralized Ethernet switches on each floor, which are connected to a switching router in the communications room, possibly using fiber.

A routing switch combines the functions of a LAN switch and router along with many other functions like DHCP. 

In other cases, the wiring closet switches will be connected directly to a centralized switching router with regular LAN cables.

Since the labor cost is usually far greater than the cable, it is strongly recommended to install cable with capacity greater than immediate needs, and twice as many cables as what the conventional wisdom dictates.

Two Category 6 cables to each work area would be the Cadillac solution.

Two Category 5e cables to each work area would be well positioned for the future.

One Category 5 cable to each work area would probably be viewed as a mistake ten years down the road.

Cross-Section of TIA-568 Category 6 Cable Cross-Section of TIA-568 Category 6 Cable

Learning Objectives - What You Will Learn

Upon completion of this lesson, you will be able to explain:

  • The TIA-568 categories
  • Cat 5, Cat 5e and Cat 6
  • How all cables are four pairs
  • How the pairs are twisted
  • How the manufacturing quality often determines whether the cable can be certified as meeting the TIA-568 standard, and
  • General practices for wiring buildings.

Lessons In This Course

1. Course Introduction

2. Broadcast Domains, MAC Addresses and MAC Frames
The fundamental idea of devices connected together in a broadcast domain, and how stations communicate using MAC addresses

3. LAN Switches a.k.a. Layer 2 Switches
How LAN switches are at the center of practical implementation of connecting stations, and how they forward frames between stations in a broadcast domain.

4. VLANs
Defining broadcast domains in software to segregate traffic. Used to separate customer traffic on carrier MANs, and used in-building as a basic network security measure.

5. 802 Physical Standards: 802.3 Twisted Pair and 802.11 Wi-Fi
Ethernet on copper wires, and standards like 1000BASE-T. Ethernet over the Ether, usually called Wi-Fi, and how MAC frames are communicated using radio carrier frequencies.

6. Twisted-Pair LAN Cables, Categories, Wiring Plan and Switch Hierarchy Wiring
Ethernet to the work area with Cat 5, Cat 5e and Cat 6 twisted-pair copper-wire cables, wiring closets and Layer 2 aggregation switches.

7. Optical Ethernet and Fiber Links
The fundamental idea of representing the 1s and 0s that make up a MAC frame using light carried in a glass tube, how fibers are actually installed and commissioned, and review the Optical Ethernet implementations in the 802.3 standard.

CTNS Study Guide and Companion Reference Textbook

7" x 9" softcover book • 362 pages
Six in one! This invaluable companion reference book and study guide contains all of the text and the main graphic from every lesson in all six online courses.
buy printed companion reference textbook - CTNS study guide
also available as an eBook ISBN 9781894887069
on amazon (for any device),   iBooks, and Google Play Books.
  • buy eBook for amazon kindle
  • buy iBook on itunes store
  • buy eBook on Google Play ebook store
money-back guarantee

30-day, 100% money-back guarantee

Buy with confidence!

Your investment is covered by a 30-day
no-questions-asked 100% money-back guarantee.

Overview of Courses in the CTNS Certification Package

Invest in yourself with Teracom’s CTNS Certification Package, eight online courses delivering a solid foundation in telecom, datacom and networking: understanding the fundamentals, technologies, jargon and buzzwords, and most importantly, the underlying ideas and how it all fits together… plus TCO Certification to prove it:

2241 Introduction to Broadband Converged IP Telecom
2206 Wireless Telecommunications
2221 Fundamentals of Voice over IP
2201 The PSTN
2212 OSI Layers and Protocol Stacks
2211 LANs, VLANs, Wireless and Optical Ethernet
2213 IP Addresses, Packets and Routers
2214 MPLS and Carrier Networks

Benefit from decades of knowledge, insight and experience distilled into clear lessons, logically organized to build one concept on another. Get a major career-enhancing and productivity-enhancing knowledge upgrade – learning that you can't get on the job, reading magazines or talking to vendors.

Based on Teracom’s famous week-long instructor-led BOOT CAMP, the selection of material, its order, timing, and explanations are field-tested to deliver the core up-to-date knowledge set for today’s telecommunications.

The first four CTNS courses are on telecommunications, beginning with Introduction to Broadband Converged IP Telecom, an introduction and first pass through all of the topics; followed by Introduction to Voice over IP, then Wireless Telecommunications, including 5G and Wi-Fi 6, and the PSTN.

Convergence • Broadband • Network Core and Edge • Protocols • Last Mile Copper, Fiber and Wireless • Residential, Business and Wholesale Services • Network Equipment • Carrier Connections
TCO CTNS Certification Course 2241 Introduction to Broadband Converged IP Telecom

Introduction to Broadband Converged IP Telecom is a high-level wide-ranging introduction to the world of modern IP telecommunications.

This course is based on the first chapter of Teracom's famous instructor-led BOOT CAMP, getting a full week of training started with an introduction to all of the different aspects of the modern converged IP telecom network.

Designed specifically for non-engineers, It's a first pass through the topics, starting at the beginning, explaining the fundamental ideas, jargon, equipment and technologies, the services that are sold, the players, where the money is, and how it all fits together.

In subsequent courses, we'll take another pass and drill deeper into key areas like Wireless, VoIP, PSTN, Ethernet, IP and MPLS.

On completion of this telecommunications course online, you will be able to:
  • Define convergence, and two ways that it might be achieved
  • Define bandwidth, explain what broadband means and how much "broad" might be
  • Identify all of the main aspects of the modern broadband converged IP network, including the parts of the physical network, the three types of services, the equipment and players
  • Describe the network core, its purpose, performance requirements and how they are implemented
  • Identify the three primary network protocols: Ethernet, IP and MPLS, and what each does
  • Explain how MAC Frames and IP Packets go together
  • Identify the essential purpose of an IP address
  • Explain the essential advantage of MPLS over IP for routing
  • Define the three main technology areas for network access
  • List the most popular technologies in each
  • Describe the three components of a network service
  • Define the three main groupings of telecom services based on customer type
  • Describe at least four different meanings of the term VPN
  • Differentiate between streaming video vs. video from your ISP, and the essential difference between them
  • Explain in general what an MPLS VPN is and who uses it
  • Identify the key difference between MPLS VPN services and SD-WAN services
  • Explain what SIP trunking is and what legacy service it replaces
  • List at least four types of wholesale telecommunications services
  • Explain what a Data Center is
  • Explain the essential function of a router
  • Describe what a Layer 2 switch is used for, and how Layer 2 switches relate to routers
  • Define multiplexing
  • Identify three technologies that use Frequency-Division Multiplexing
  • Identify the name for FDM in the fiber optic world
  • Differentiate between FDM and Time-Division Multiplexing
  • Describe what a gateway is and the two functions it performs

This is quite a range of knowledge, and can appear daunting, especially if you are new to telecom. Keep in mind that this course is the introduction, the first pass through all of these topics.

No-one is expecting anyone to be an instant expert!

In subsequent courses, we take a second and sometimes third pass through the topics and drill deeper to more fully understand the concepts and technologies.

With this course, we're getting started identifying and understanding all of the aspects of modern broadband converged IP telecommunications.

Based on Teracom's famous Course 101, tuned and refined over the course of more than 20 years of instructor-led training, we'll cut through the jargon to demystify modern IP telecommunications, explaining the jargon and buzzwords, the underlying ideas, and how it all works together… in plain English.

Mobile Network Fundamentals • Cellular Principles • Digitized Voice over Radio • Mobile Internet • FDMA, TDMA, CDMA and OFDM • 4G LTE and OFDMA • 5G: New Spectrum, Ultra-Broadband and IoT • Wi-Fi 6 802.11ax • Communication Satellites
TCO CTNS Certification Course 2206 Wireless Telecommunications

We begin with basic concepts and terminology involved in mobile networks, including base stations and transceivers, mobile switches and backhaul, handoffs, cellular radio concepts and digital radio concepts.

Next, we understand how phone calls are made over radio and how they connect to landlines; and how mobile internet is implemented, tethered modems and mobile Wi-Fi hotspots.

Without bogging down on details, we'll review spectrum-sharing technologies: FDMA for first generation; 2G GSM/TDMA, 3G CDMA and 4G and 5G OFDM.

We'll understand how modems represent bits on subcarriers in OFDM, and how OFDMA is used in 4G and 5G to dynamically assign subcarrier(s) to users.

This is followed with Wi-Fi, or more precisely, 802.11 wireless LANs: the system components, frequency bands, bitrates and coverage for all of the versions up to Wi-Fi 6 which is 802.11ax, the first Wi-Fi to implement full-duplex communications with multiple simultaneous devices using OFDMA and a theoretical 9.6 Gb/s.

The course is completed with communications satellites, in Geosynchronous Earth Orbit and Low Earth Orbit, including Iridium Next and Starlink.

You'll gain a solid understanding of the key principles of wireless and mobile networks:

  • Radio fundamentals
  • Mobile network components and operation
  • Coverage, capacity and mobility
  • Why cellular radio systems are used
  • Registration and handoffs
  • Digitized voice over radio for PSTN phone calls
  • Mobile Internet: "Data Plan"
  • Cellular technologies: FDMA, TDMA, CDMA, OFDM
  • 4G LTE and OFDMA
  • 5G: new spectrum, more b/s, ultra-broadband and IoT
  • Wi-Fi: 802.11 wireless LANs, Wi-Fi 6 / 802.11ax
  • GEO and LEO satellite communications
Loops and Trunks   •  POTS   •  Circuit-Switching   •  LECs, CLECs and IXCs   •  Analog   •  Voiceband   •  DTMF   •  SS7
TCO CTNS Certification Course 2221 Fundamentals of Voice over IP

Jargon & Buzzwords • VoIP Phone System Components and Operation • Voice Packetization • LANs and WANs • VoIP Phones: MAC Address, DHCP, IP, UDP, RTP, QoS • SIP, Softswitches & SIP Trunking • Cloud • The Future

Fundamentals of Voice over IP is a complete introduction to everything Voice over IP. You'll learn the fundamental ideas and principles of a VoIP telephone system, VoIP, SIP & all the other jargon - what it actually means and how it all works together.

At each step, we'll also cover supporting and related technologies like Ethernet MAC frames and codecs and video over IP.

The objective of this course is to put in place a solid, structured base of knowledge in the technology and implementation of communicating thoughts from one person's brain to another via a telephone conversation carried in IP packets.

In particular, on completion of this course, you will be able to explain:

  • How a VoIP phone is more of a computer than a phone, and its computer functions
  • How a VoIP phone digitizes the speech coming into a microphone
  • The idea of adding a time stamp to a 20 ms segment of digitized speech 
  • How UDP adds a port number and error check
  • IP adds the called party's telephone's IP address and creates an IP packet
  • This is carried in a MAC frame over a physical circuit to the next router
  • Reconstructing the speech at the far end
  • What happens when packets with voice get delayed or lost
  • That SIP is the protocol for exchanging little text messages to start a phone call
  • What a video server is made of, where it is located, and what it does
  • What a gateway is and why it is needed
  • Wiring VoIP phones to Layer 2 aggregation and PoE switches in wiring closets
  • VoIP carrier services, including SIP trunking, MPLS VPN, Internet SD-WAN
  • What a Service Level Agreement is
  • How basic telecom service will be Broadband IP Dial Tone in the future, as the Internet and the telephone network become the same thing.
Loops and Trunks   •  POTS   •  Circuit-Switching   •  LECs, CLECs and IXCs   •  Analog   •  Voiceband   •  DTMF   •  SS7
TCO CTNS Certification Course 2201 The PSTN

One cornerstone of a full, rounded base of knowledge of telecommunications is the structure and operation of the Public Switched Telephone Network, built over the past 135 years, still in operation in every country on earth – knowledge necessary for connecting the PSTN to, and steadily replacing the PSTN with IP telecom technologies.

In this course, you'll build a solid understanding of the fundamentals of the telephone system: Customer Premise and Central Office, loops, trunks, remotes, circuit switching and how a telephone call is connected end-to-end. We'll cover LECs, CLECs and IXCs, sound, analog and the voiceband, twisted pair, DTMF and SS7. Updated for the 2020s.

On completion of this course, you will be able to draw a model of the Public Switched Telephone Network, identify and explain its components and technologies including:

  • Loops and trunks, CO, telephone switches and circuit-switching
  • Twisted pair, the outside plant, remotes, fiber to the neighborhood
  • The founding, breakup and re-emergence of AT&T in the US; Bell & TELUS in Canada
  • LECs, IXCs and CLECs
  • Plain Ordinary Telephone Service (POTS):
  • Analog, the voiceband, how it relates to copper wires, electricity, circuits and sound
  • Supervision, dial tone, ringing, lightning protection, tip and ring, -48 volts
  • Touch-tone and DTMF
  • Basics of SS7 and call routing

 

The second half of CTNS is four courses on networking, delivering a practical understanding of Ethernet and its MAC frames, IP packets with IP addresses and routers, and the traffic management system MPLS. We begin with the OSI Reference Model and its Layers as a framework to organize the discussions.

Protocols & Standards   •  OSI Model   •  Layers   •  Protocol Stacks   •  How Protocol Stacks Work
TCO CTNS Certification Course 2212 OSI Layers and Protocol Stacks

This course establishes a framework for all of the subsequent discussions: the OSI 7-Layer Reference Model, which identifies and divides the functions to be performed into groups called layers.

This framework is required to sort out the many functions that need to be performed, and to be able to discuss separate issues separately.

First, we'll define the term "protocol" and compare that to a standard. Then we'll define "layer" and how a layered architecture operates, and provide an overview of the name, purpose and function of each of the seven layers in the OSI model.

Then, we'll go back through the story more slowly, with one lesson for each of the layers, examining in greater detail the functions that have to be performed and giving examples of protocols and how and where they are used to implement particular layers.

The result is a protocol stack, one protocol on top of another on top of another to fulfill all of the required functions. To make this more understandable, this course ends with the famous FedEx Analogy illustrating the concepts using company-to-company communications, and an analogy of Babushka dolls to illustrate how the protocol headers are nested at the bits level.

On completion of this course, you will be able to:

  • Define a protocol and differentiate that from a standard
  • Explain why a layered architecture is required
  • List the seven layers of the OSI model, the name, purpose and functions of each
  • Explain how the layers relate to each other
  • Explain how a protocol stack operates and protocol headers.
MAC Addresses • MAC Frames • Layer 2 Switches • VLANs • Ethernet on Copper • 1000BASE-T • Power over Ethernet • Cable Categories • Office Wiring Plan • Wireless Ethernet (Wi-Fi) • Optical Ethernet • Ethernet in the Core, MANs and PONs • Fiber Types • SFP Transceivers • Field Installation
TCO CTNS Certification Course 2211 LANs, VLANs, Wireless and Optical Ethernet

This course is all about Ethernet: the fundamentals, equipment and implementations including twisted-pair copper cables, wireless and fiber, in-building, in the network core, MANs and PONs.

You'll understand the jargon and buzzwords, the underlying ideas, and how it all works together to form the physical basis of the telecom network.

On completion of this course, you will be able to explain:

  • The idea of a broadcast domain.
  • The idea of a MAC addresses to identify a LAN interface on a station in a broadcast domain.
  • What MAC frames are, and what purpose they serve.
  • What a LAN switch is, and what it does.
  • How VLANs can be used to segregate devices into different broadcast domains. 
  • The IEEE 802 series of standards
  • The 802.3 standard and communicating MAC frames at 10 Mb/s on coaxial cables to Gigabit Ethernet on copper and fiber.
  • What the code 1000BASE-T means.
  • MAC frames over the Ether, a.k.a. Wi-Fi, the 2.4 and 5 GHz unlicensed bands, and the fundamentals of how the bits in MAC frames are communicated using radio carrier frequencies.
  • Wiring Ethernet to the work area with Cat 5, Cat 5e and Cat 6 twisted-pair copper-wire cables.
  • Wiring closets and Layer 2 aggregation switches.
  • What Optical Ethernet is, and how it is the building block of telecom networks, including Metropolitan Area Networks (MANs), carrier MPLS networks, and Passive Optical Networks (PONs) for fiber to the home.
  • The fundamentals of how the bits in MAC frames are communicated using light guided in glass tubes.
  • How fiber cables are deployed and connected to equipment at each end. What designations like 100GBASE-ER4 mean.
IP Packets   •  Packet Networks   •  Routers   •  Static, Dynamic, Public, Private Addresses   •  NAT   •  IPv6
TCO CTNS Certification Course 2213 IP Networks, Routers and Addresses
This is a comprehensive course on IP addresses, routers and packets. Referring to the OSI Layers, this course could also be called Layer 3. We begin with the two basic principles of packet networks: bandwidth on demand, also known as overbooking or statistical multiplexing; and packet-switching, also known as packet forwarding or routing.
We'll understand what routers do and where they are located, routing tables and the basic operation of a router and the standard strategy deploying an edge router between the LANs and the WAN at each location.
Then we'll cover IP version 4: address classes and how they are assigned to Regional Internet Registries then ISPs then end-users, dotted-decimal notation, static addresses, dynamic addresses and DHCP, public addresses, private addresses and NAT.
The course concludes with IPv6: the IPv6 packet and changes from IPv4, IPv6 address allocations and assignments and end up understanding how IPv6 subnets will be assigned to broadcast domains and 18 billion billion addresses per residence.

On completion of this course, you will be able to explain:

  • What a packet is
  • What a router is
  • Overbooking and bandwidth on demand
  • Why and how it can be implemented
  • What a network is, what a private network is
  • How routers implement a network by connecting links
  • How routers move packets between broadcast domains
  • Basic network design and security: packet filtering
  • The basic structure and contents of a routing table
  • The Customer Edge
  • IPv4 address blocks: Class A, Class B and Class C
  • Dotted-decimal notation
  • Static addresses and dynamic addresses
  • DHCP and how and why it is used to assign both
  • Public addresses and private addresses
  • How, why and where each is used
  • NAT: Network Address Translation
  • IPv6
  • How IPv6 addresses are allocated to ISPs
  • How each residence gets 18 billion billion IPv6 addresses
Carrier Packet Networks   •  Technologies   •  MPLS   •  SLAs   •  CoS   •  Integration & Aggregation
TCO CTNS Certification Course 2214 MPLS and Carrier Networks

MPLS and Carrier Networks is a comprehensive, up-to-date course on the networks companies like AT&T build and operate, how they are implemented, the services they offer, and how customers connect to the network.
The IP packets and routing of the previous course is one part of the story. Performance guarantees, and methods for quality of service, traffic management, aggregation and integration is another big part of the story, particularly once we leave the lab and venture into the real world and the business of telecommunications services.
We'll begin by establishing a basic model for a customer obtaining service from a provider, defining Customer Edge, Provider Edge, access and core, and a Service Level Agreement: traffic profile vs. transmission characteristics.
Next, we'll understand virtual circuits, a powerful tool used for traffic management and how they are implemented with MPLS, explaining the equipment, jargon and principles of operation.
Without bogging down on details, we’ll cut through buzzwords and marketing to demystify:

  • Carrier packet networks and services
  • Customer Edge (CE) and Provider Edge (PE)
  • Service Level Agreements
  • Traffic profiles
  • Virtual circuits
  • QoS, Class of Service and Differentiated Services
  • Integration, convergence and aggregation
  • MPLS and other network technologies
  • How this relates to TCP/IP
  • How MPLS is used for business customer VPNs
  • How MPLS is used for integrated access:
  • How all services are carried together on one circuit
  • How MPLS is used to prioritize and manage IP packets
  • "MPLS services" vs. the Internet
This course can be taken by those who need just an introduction to carrier networks and MPLS, as well as by those who need to establish a solid base on which to build more detailed knowledge.
detailed PDF brochure detailed
course
outlines
free previews free
previews
catalog catalog
price list price list
money-back guarantee money-back
guarantee
unlimited plan Unlimited
Plan
frequently-asked questions (FAQs) and information FAQs
About TCO Certification

Teracom is an Accredited Training Partner of the Telecommunications Certification Organization, authorized to administer exams for TCO certifications on the myTeracom Learning Management System and award TCO Certifications.

TCO Certification is proof of your knowledge of telecom, datacom and networking fundamentals, jargon, buzzwords, technologies and solutions.

It's backed up with a Certificate suitable for framing - plus a personalized Letter of Reference / Letter of Introduction detailing the knowledge your TCO Certification represents and inviting the recipient to contact Teracom for verification.

You may list Teracom Training Institute as a reference on your résumé if desired.

Getting your Certificate

Each course has a course exam, consisting of ten multiple-choice questions chosen at random from a pool and shuffled in order. Passing the course exams proves your knowledge of these topics and results in your certification as a Certified Telecommunications Network Specialist.

Your Certificate and Letter of Reference / Letter of Introduction will be immediately available for download from your Dashboard in the myTeracom Learning Management System. You may also order a signed and sealed Certificate by airmail.
Choosing the "Unlimited Plan" at registration allows you to repeat courses and/or exams at no additional charge – which means guaranteed to pass if you're willing to learn.

Alternatively, if you like this discounted package of courses, but don't need the certification – or don't feel like writing exams – no problem! Take the Telecom, Datacom and Networking for Non‑Engineers course package, which includes the same courses as the CTNS certification package, without the certification exams.

Benefits of Certification for Individuals

One benefit of TCO certification is differentiating yourself from the rest of the crowd when applying for a job or angling for a promotion.

The knowledge you gain taking Teracom's Online Courses, confirmed with TCO Certification, is foundational knowledge in telecommunications, IP, networking and wireless: fundamental concepts, mainstream technologies, jargon, buzzwords, and the underlying ideas - and how it all fits together.

This type of knowledge and preparation makes you an ideal candidate to hire or promote to a task, as you will be able to build on your knowledge base to quickly get up to speed and work on a particular project - then have the versatility to work on subsequent projects.

TCO Certification will help demonstrate you have this skill... a desirable thought to have in your potential manager's mind.

Benefits of Certification for Employers

Take advantage of these courses for individual learning, a team, or for an entire organization.

The scalable myTeracom Learning Management System can register and manage all of your people through their courses, lessons and exams, and generate management reports showing progress and scores with the click of a button.

For larger organizations, the courses and exams can also be licensed and deployed on an organization's internal LMS.

Teracom certification packages are an extremely cost-effective way of implementing consistent, comprehensive telecommunications and networking technology fundamentals training, ensuring that both existing resources and new hires are up to the same speed, with a common vocabulary, framework and knowledge base.

The course exams provide concrete measurements of competency in key knowledge areas. Management can view the progress and results of all team members and export the results to Excel with the click of a button.

These reports identify skills deficiencies and strengths, and provide tangible proof of return on investment and team readiness for reports to upper management.

Teracom Advantages

  • Training based on Teracom's proven instructor-led training courses developed and refined over more than twenty years providing training for organizations including AT&T, Verizon, Bell Canada, Intel, Microsoft, Cisco, Qualcomm, the CIA, NSA, IRS, FAA, US Army, Navy, Marines and Air Force and hundreds of others, Teracom online courses are top-notch, top-quality and right up to date with the topics and knowledge you need.
  • Proven courses used by the biggest telecom carriers to train their employees
    These courses are the same courses used by the biggest telecom carriers in the business to train their employees - constantly updated to deliver the core technical knowledge required in the telecom business today. This is the best quality training of its kind available.
  • GSA Schedule
    Teracom online courses and certification packages are on our US Government supply contract... which took two years and a 200-page application... so you know you are getting quality.
  • 30-Day 100% Money-Back Guarantee
    You are protected by Teracom's 30-day, no-questions-asked, 100% money-back guarantee.  terms and conditions
  • Career-enhancing knowledge
    This training is an ideal way to implement a career-enhancing upgrade to your knowledge, or to prepare for a job in the telecommunications business.
  • Guaranteed to Pass with the Unlimited Plan
    Choose the Unlimited Plan for unlimited repeats of courses and exams - which means you can retake courses to refresh your knowledge in the future, and guaranteed to pass the exam if you're willing to learn.  unlimited plan info
  • Certificate and Letter of Reference
    In addition to your TCO Certificate, you will also receive – a Teracom exclusive – a personalized Letter of Reference / Letter of Introduction explaining the courses you took and the knowledge you have, and inviting anyone you give it to to contact Teracom a reference... an excellent addition to your CV.
  • Self-paced training
    The courses and their lessons can be done at your own pace. There are no time limits for completing a lesson and moving to the next one. The courses may be done in any order.
  • Team training
    These courses are a highly cost-effective and consistent way for managers to get team members up to a common speed with measurable results. The myTeracom Learning Management System provides management reports showing your team's progress with a few clicks of the mouse.  more info

What is the value of the CTNS certification?  Click here to find out